DAFTAR ISI

International Journal of Instruction (IJI):

- 1. Screen capture IJI dari Scopus.com
- 2. Screen capture IJI dari scimagojr.com
- 3. Sampul (about) IJI
- 4. Editorial Board IJI
- 5. Daftar Isi IJI Vol.: Vol.13, No.1 January 2020
- 6. Copy Artikel

Source details

International Journal	of	Instruction
-----------------------	----	-------------

Open Access (i)

Scopus coverage years: from 2013 to 2019

Publisher: Faculty of Education, Eskisehir Osmangazi University

ISSN: 1694-609X E-ISSN: 1308-1470

Subject area: (Social Sciences: Education)

View all documents > Set document alert

☐ Save to source list Journal Homepage

SJR 2018 0.348

CiteScore 2018 1.38

Add CiteScore to your site

SNIP 2018 1.844

CiteScore	CiteScore rank & trend C	iteScore presets	Scopus content coverage			
CiteScore 2018		Calculat	ed using data from 30 April, 2019	CiteScore rank ①		
1 20	Citation Count 2018	= 191 Citations > 138 Documents >		Category —	Rank Percentile	
1.30 =	Documents 2015 - 2017*			Social Sciences Education	#329/1038	
*CiteScore in	cludes all available document types	View CiteScore me	ethodology > CiteScore FAQ >	View CiteScore tre	nds >	

CiteScoreTracker 2019 ①

Last updated on 08 January, 2020 Updated monthly

Metrics displaying this icon are compiled according to Snowball Metrics ${m z}$, a collaboration between industry and academia.

Scimago Journal & Country Rank Enter Journal Title, ISSN or Publisher Name

Home

Journal Rankings

Country Rankings

Viz Tools

Help

About Us

International Journal of Instruction 8

Country
Subject Area and Category
Publisher

Turkey - IIII SIR Ranking of Turkey

Social Sciences Education

Faculty of Education, Eskisehir Osmangazi University

H Index

Publication type | Journals

ISSN 1694609X, 13081470

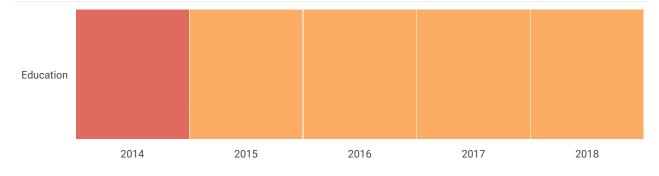
Coverage 2013-ongoing

Scope

nternational Journal of Instruction is an internationally recognized journal in the field of education and is published four times a year (in January, April, July & October). The aim of this journal is to publish high quality studies in the areas of instruction, learning, teaching, curriculum development, learning environments, teacher education, educational technology, educational developments. Studies may relate to any age level-from infants to adults. IJI, being an international journal, our editorial advisory board members are from various countries around the world. The articles sent to the Journal are always reviewed by two members of the Editorial Advisory Board (double blind peer review), and in some cases, if necessary, by another member of the Board. Depending on the evaluation reports of the members of the Editorial Advisory Board, articles are published or not. Article evaluation process takes approximately three months. The authors are responsible for the errors, if any, in their published articles. The articles need to be not published elsewhere previously.

?

Homepage


How to publish in this journal

Contact

 \mathcal{L}

Join the conversation about this journal

Quartiles

a

About Us (/about-us)

Hits: 56129 CONTACT (/CONTACT)

.

Description

International Journal of Instruction is an internationally recognized journal in the field of education and is published four times a year (in January, April, July & October). The aim of this journal is to publish high quality studies in the areas of instruction, learning, teaching, curriculum development, learning environments, teacher education, educational technology, educational developments. Studies may relate to any age level - from infants to adults.

IJI, being an international journal, our editorial advisory board members are from various countries around the world. The articles sent to the Journal are always reviewed by two members of the Editorial Advisory Board (double blind peer review), and in some cases, if necessary, by another member of the Board. Depending on the evaluation reports of the members of the Editorial Advisory Board, articles are published or not. Article evaluation process takes approximately three months. The authors are responsible for the errors, if any, in their published articles. The articles need to be not published elsewhere previously.

ETHICS, STANDARDS & RESPONSIBILITIES

The mission of the International Journal of Instruction is to contribute to the literature of instruction by publishing high quality studies in the areas of instruction, learning, teaching, curriculum development, learning environments, teacher education, educational technology, educational developments, and other learning-instruction issues. As a peer-reviewed journal, one of our priorities is to ensure high standards of publishing. Publication ethics is an important concern and editors, peer-reviewers and authors should pay great attention to meet the ethical standards.

Open Access Policy

International Journal of Instruction aims to increase visibility and make easier use of open access scientific papers. Readers and their institutions are supported for online access without asking for any royalty, personnel information, or log in process. According to open access policy of our journal, all readers are permitted to read, download, copy, distribute, print, link and search our articles with no charge.

To the Editors of IJI

To ensure editorial ethics, editors should be careful not to discriminate authors with respect to their genders, religious or political beliefs, ethnic or geographical origin and should handle all the articles in the same way to assess academic merit only. Every submission to the IJI should be evaluated in the same way and ethical complaints should be subjected to reasonable procedures as follows;

Any unethical behaviour or misconduct reported to or noticed by editors should be thoroughly investigated. Identification of the violation should require further procedure. Any suspicious case should be taken seriously and an initial decision should be made by the editors.

If the initial decision of the editor approves an unethical behaviour or misconduct, all the evidence should be collected and further negotiated with a group of editorial board members formed to deal with the case. In case of a minor misconduct, the editor should keep the group small and the editor should give the chance to respond to the author. If there is a serious misconduct, then the employers of the accused may be needed to be notified of the case. Involvement of the employer should be decided as a result of a brief investigation and consultation with editorial board members and experts.

Outcomes of an ethical violation or misconduct may include informing or educating the author or reviewer where there appears to be a misunderstanding or misapplication of acceptable standards or a more strongly worded letter to the author or reviewer covering the misconduct and as a warning to future behaviour. If the case is very serious and the editorial board members decides to do so, a formal notice or even an editorial detailing the misconduct may be published detailing the misconduct. If the case requires, a formal letter may be sent to the head of the author's or reviewer's department or funding agency. And in case the violation or misconduct is out of reach of the editorial board members and requires further investigation, then the case and outcome may be reported to a professional organisation or higher authority for further investigation and action.

To the Reviewers

Reviewers should review the manuscripts in an objective way and in a timely manner so they can contribute to the decision-making process, and assist in improving the quality of the published paper. They should maintain the confidentiality of any information supplied by the editor or the author and not retain or copy the manuscript. It is reviewers' responsibility to alert the editor to any published or submitted content that is substantially similar to that under review. They should be aware of any potential conflicts of interest (financial, institutional, collaborative or other relationships between the reviewer and author) and to alert the editor to these, if necessary withdrawing their services for that manuscript.

To the Authors

Authors should maintain accurate records of data associated with their submitted manuscript, and provide access to these data, on reasonable request. They should keep the data associated with their manuscript in a suitable repository for sharing and further use by others where appropriate and where allowed by employer, funding body and others who might have an interest on the data. Authors must confirm/assert that the manuscript as submitted is not under consideration or accepted for publication elsewhere. Where portions of the content overlap with published or submitted content, those sources must be acknowledged and cited. Additionally, authors must provide the editor with a copy of any submitted manuscript that might contain overlapping or closely related content.

Authors must confirm that all the work in the submitted manuscript is original and to acknowledge and cite content reproduced from other sources. It is authors responsibility to obtain permission to reproduce any content from other sources. Authors should ensure that any studies involving human or animal subjects conform to national, local and institutional laws and requirements (e.g.

E-IJI.NET

- Editorial Board (/editorial-board)
- Advisory Board (/advisory-review-board)
- Abstracting / Indexing (/abstracting-indexing)
- Author Guidelines (/author-guidelines)
- Manustcript Template (/dosyalar/iji_model.doc)
- Notes to Contributors (/notes-to-contributes)
- Notes to Editorials
 (/notes-to-editorials)
- Open Access Policy (/open-access-policy)
- Publication Ethics & Malpractice Statement (/publication-ethicsmalpractice-statement)
- Submit Your Article (/article-submission)

ARTICLE STATISTICS

Article Submitted: 5429 Article Published: 746

(/images/iji.jpg)

(http://www.gateacademy.c

Gate Association for Teaching and Education (http://www.gateacademy.c

International Congress (/international-congress)

WMA Declaration of Pelsinki, NIH Polytons) and confirm that approval obtain express permission from

Anatolian Journal of

on Use of laboratory Animals, EU Directive on Use of been sought and obtained where appropriate. Authors uman subjects and obtained where appropriate. Authors Education (http://espace.net/index.php?)

Anatolian Journal of Education (http://espace.net/index.php?)

is a significant error in their publication is addendum. Autrors should notify our exitors promptly if a significant error in their publication is identified. They shall cooperate with the editor and publisher to publish an erratum, addendum, corrigendum notice, or retract the paper, where this is deemed necessary. CONTACT (/CONTACT)

PS: More Information on author guidelines can be found under the 'author Guidelines' heading.

International Journal of Instruction is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

HOMEPAGE (/) ABOUT US (/ABOUT-US) VOLUMES (/VOLUMES) CONTACT (/CONTACT)

***** •

Editorial Board (/editorial-board)

Hits: 81197 CONTACT (/CONTACT)

Owner

GATE Academy (http://www.gate.kg)

Editor in Chief

Prof. Asım ARI (/editorial-board/104-dergiler/301-prof-asim-ari) Eskişehir Osmangazi University, TURKEY

Managing Editor

Dr. Gökhan KAYIR

SWISS

Assistant Editors

Dr. Kerim SARIGÜL (http://kerimsarigul.com/hakkimda) Yunus Emre Institute

Prof. Yousif A. ALSHUMAIMERI (http://facultv.ksu.edu.sa/vousif/default.aspx) King Saud University, SAUDI ARABIA Prof. Luis E. ANIDO RIFÓN (http://wwwgist.det.uvigo.es/~lanido/) University of Vigo, SPAIN

Prof. Trevor G. BOND

(http://www.ied.edu.hk/epcl/about/staff_bondt.htm)Hong Kong Institute of Education, HONG KONG

Assoc. Prof. Bronwen COWIE

(http://edlinked.soe.waikato.ac.nz/staff/index.php? user=bcowie)

University of Waikato, NEW ZEALAND

Prof. Do COYLE

(http://www.lsri.nottingham.ac.uk/Staff/Do_Coyle.php)The University of Aberdeen, UNITED KINGDOM Prof. Angelique DIMITRACOPOULOU (http://ltee.org/adimitr/?page_id=62) University of the Aegean, GREECE Prof. William J. FRASER University of Pretoria, SOUTH AFRICA

Prof. Thomas GABRIEL

(http://www.zhaw.ch/fileadmin/php_includes/popup/persondetail.php?kurzz=gabr)

University of Zurich, SWITZERLAND

Asst. Prof. Sheng-Wen HSIEH

(http://cc.feu.edu.tw/~onyx/)Far East University,

TAIWAN

Assoc. Prof. Jennifer L. JOLLY (https://education.arts.unsw.edu.au/aboutus/people/jennifer-l-jolly/)

The University of New South Wales, AUSTRALIA Asst. Prof. Mehmet KOÇYİĞİT Afvon Kocatepe University, TURKEY

Assoc. Prof. Piet KOMMERS (http://users.edte.utwente.nl/kommers/) University of Twente, NETHERLANDS

Prof. Christoph RANDLER (http://www.phheidelberg.de/biologie/personen/lehrende/randler.html) University of Education, GERMANY Prof. Elsebeth Korsgaard SORENSEN (http://www.kommunikation.aau.dk/ansatte/es/) University of Aarhus, DENMARK Prof. Ken STEVENS

(http://www.killickcentre.ca/bios/kstevens.html) Memorial University of Newfounland, CANADA

Prof. Selahattin TURAN

Bursa Uludağ University, TURKEY

Editorial Assistant

Nursen BERK MEB. TURKEY

Language Editorial Board

Sadik Muhammad YAOUB - Arabic Bangladesh Islami University, BANGLADESH Dr. Nurulwahida Hj AZID – Malaysian University Utara Malaysia, MALAYSIA Rza Mammadov - Russian

Editorial Assistant

İsmail KASARCI

Eskişehir Osmangazi University, TURKEY

Burcu KARAFİL – English Yalova University, TURKEY Burcu UĞUR – French Eskişehir Osmangazi University, TURKEY Gökhan KAYIR – German SWISS

E-IJI.NET

Search

 Editorial Board (/editorial-board)

VOLUMES (/VOLUMES)

- Advisory Board (/advisory-review-board)
- Abstracting / Indexing (/abstracting-indexing)
- Author Guidelines (/author-guidelines)
- · Manustcript Template (/dosyalar/iji model.doc)
- Notes to Contributors (/notes-to-contributes)
- Notes to Editorials (/notes-to-editorials)
- · Open Access Policy (/open-access-policy)
- Publication Ethics & Malpractice Statement (/publication-ethicsmalpractice-statement)
- · Submit Your Article (/article-submission)

ARTICLE STATISTICS

Article Submitted: 5429 Article Published: 746

(/images/iji.jpg)

(http://www.gateacademy.c

Gate Association for Teaching and Education (http://www.gateacademy.c

International Congress (/international-congress)

Anatolian Journal of
HOMEPAGE (HTTP://WWW.E-IJI.NET/)
ABOUT US (/ABOUT-US)

aje.net/index.php?
lang=en)

International Journal of Instruction is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

ABOUT US (/ABOUT-US) VOLUMES (/VOLUMES) CONTACT (/CONTACT) HOMEPAGE (/)

CONTACT (/CONTACT)

You are here: / e-iji.net - Home Page Search ... Q

January 2020, Volume 13, Number 1 (/volumes/359january-2020,-volume-13,-number-1)

Summer University on Federalism in

(https://www3.unifr.ch/federalism/en/capacitybuilding/summeruniversity.html) Switzerland(https://www3.unifr.ch/federalism/en/capacitybuilding/summeruniversity.html)Contents .pdf (/dosyalar/iji_2020_1_contents.pdf)

From the Editor: The Curricular System at the University of Basel, Switzerland (/dosyalar/iji 2020 1 0.pdf) Zevnep Kövlü

The Impact of Genre Based Instruction on EFL Learners' Writing Development (/dosyalar/iji_2020_1_1.pdf) Sirisuda Thongchalerm, Wisut Jarunthawatchai

The Role of Critical Thinking as a Mediator Variable in the Effect of Internal Locus of Control on Moral Disengagement (/dosvalar/iii 2020 1 2.pdf)

Tahrir, Farid Soleh Nurdin, Ida Royani Damayanti

The Relationship among University Students' Trust, Self-Esteem, Satisfaction with Life and Social Media Use (/dosyalar/iji 2020 1 3.pdf)

Ismail Acun

MoLearn, a Web-and Android-Based Learning Application as an Alternative for Teaching-Learning Process in High Schools (/dosyalar/iji 2020 1 4.pdf)

M. J. Dewiyani Sunarto, Bambang Hariadi, Tri Sagirani, Tan Amelia, Julianto Lemantara

Dissonances between Teachers' Beliefs and Practices of Formative Assessment in EFL Classes (/dosvalar/iii 2020 1 5.pdf)

Ida Ayu Made Sri Widiastuti, Nur Mukminatien, Johannes Ananto Prayogo, Enny Irawati

Relationships between Cognitive Flexibility, Perceived Quality of Faculty Life, Learning Approaches, and Academic Achievement (/dosyalar/iji 2020 1 6.pdf)

Çetin Toraman, Hasan Fehmi Özdemir, Ayşen Melek Aytuğ Koşan, Şenol Orakcı

Community Multicultural Integration Pattern in Environment-Based Learning (/dosyalar/iji 2020 1 7.pdf)

Munardji, Nur Kholis, Nuril Mufidah

EECN: Analysis, Potency, Benefit for Students Knowledge and Attitude to Conserve Mangroves and Coral Reefs (/dosyalar/iji 2020 1 8.pdf)

Diana Vivanti Sigit, Mieke Miarsyah, Ratna Komala, Ade Suryanda, Ilmi Zajuli Ichsan, Rahmat Fadrikal

Using Teaching Practices Inventory to Evaluate Mathematics Faculty Teaching Practices in Higher Education (/dosyalar/iji_2020_1_9.pdf)

Khalid M Alsharif, Naem M Alamri

Effect of 3D Visualization on Students' Critical Thinking Skills and Scientific Attitude in Chemistry

(/dosyalar/iji 2020 1 10.pdf)

Tiwi Nur Astuti, Kristian Handoyo Sugiyarto, Jaslin Ikhsan

Digital Technologies in Early Childhood: Attitudes and Practices of Parents and Teachers in Kosovo (/dosyalar/iji 2020 1 11.pdf)

Majlinda Gjelaj, Kastriot Buza, Kyvete Shatri, Naser Zabeli

Semantic Feature Analysis Model: Linguistics Approach in Foreign Language Learning Material Development (/dosyalar/iji 2020 1 12.pdf)

Mantasiah R., Yusri, Jufri

Bahrain's Secondary EFL Teachers' Beliefs of English Language National Examination: 'How it made teaching different?' (/dosyalar/iji_2020_1_13.pdf)

Hasan M. Al-Wadi

Implementation of the Parenting Model to Improve Understanding of Reproduction Health of Vocational High School Students (/dosvalar/iii 2020 1 14.pdf)

Merri Sri Hartati, IGP Suryadarma, Farida Hanum

The Needs of Islamic Digital Resources in Polytechnic Brunei Darussalam: A Preliminary Study (/dosyalar/iji 2020 1 15.pdf)

Aliff Nawi, Gamal Abdul Nasir Zakaria, Norkhairiah Hashim, Salwa Mahalle, Chua Chy Ren

Attitudes toward Chemistry, Self-Efficacy, and Learning Experiences of Pre-Service Chemistry Teachers: Grade Level and Gender Differences (/dosyalar/iji_2020_1_16.pdf)

Dwi Wahyudiati, Eli Rohaeti, Irwanto, Antuni Wiyarsi, Lalu Sumardi

Effectiveness of Cooperative Learning on English Communicative Ability of 4th Grade Students in Bhutan (/dosyalar/iji 2020 1 17.pdf)

Tashi Dendup, Angkana Onthanee

Self-Perception Self-Esteem Physical Activity and Sedentary Behavior of Primary Greek- School Students: A Pilot Study (/dosyalar/iji_2020_1_18.pdf)

Sophia Batsiou, Stamatia Bournoudi, Panagiotis Antoniou, Savvas P. Tokmakidis

Using Android Media for Chemistry Learning Construction of Motivation and Metacognition Ability (/dosyalar/iji_2020_1_19.pdf)

Anggun Dwi Astiningsih, Crys Fajar Partana

Should Peer E-Comments Replace Traditional Peer Comments? (/dosyalar/iji_2020_1_20.pdf)

Pham Vu Phi Ho, Luong Thi Kim Phung, Tran Thi Thuy Oanh, Nguyen Ouang Giao

The Effects of 5E Learning Cycle Assisted with Spatial Based Population Geography Textbook on Students' Achievement (/dosyalar/iji 2020 1 21.pdf)

Suwito, Budijanto, Budi Handoyo, Singgih Susilo

E-IJI.NET

- · Editorial Board (/editorial-board)
- Advisory Board (/advisory-review-board)
- · Abstracting / Indexing (/abstracting-indexing)
- Author Guidelines (/author-guidelines)
- Manustcript Template (/dosyalar/iji_model.doc)
- Notes to Contributors (/notes-to-contributes)
- Notes to Editorials (/notes-to-editorials)
- Open Access Policy (/open-access-policy)
- Publication Ethics & Malpractice Statement (/publication-ethicsmalpractice-statement)
- Submit Your Article (/article-submission)

ARTICLE STATISTICS

Article Submitted: 5429 Article Published: 746

(/images/iji.jpg)

Teachers' Reported Use of Marzano's Instructional Strategies in United Arab Emirates K-12 Schools (/dosyalar/iji_2020_1_22.pdf)

Abdurrahman Ghaleb Almekhlafi, Sadia Abdulwahed Ismail, Abdelmoniem Ahmed Hassan

Comparing Math Anxiety of Scientific Facilities Students as Related to Achievement, and Some Variables (/dosyalar/iji_2020_1_23.pdf)

Mamoon M. Mubark Al-Shannaq, Johanna Leppavirta

EFL Teachers' Attitudes towards Language Learners: A Case of Multicultural Classrooms (/dosyalar/iji_2020_1_24.pdf)

Martin Kustati, Yunisrina Oismullah Yusuf, Hallen, Hidayat Al-Azmi, Sermal

Development of a Unity in Diversity-based Pancasila Education Text Book for Indonesian Universities (/dosyalar/iji 2020 1 25.pdf)

Aim Abdulkarim, Kokom Komalasari, Didin Saripudin, Neiny Ratmaningsih, Diana Noor Anggraini

The Effect of Jumping Task Based on Creative Problem Solving on Students' Problem Solving Ability (/dosyalar/iji_2020_1_26.pdf)

Hobri, Irma Khoirul Ummah, Nanik Yuliati, Dafik

Metacognitive Monitoring in Test-taking Situations: A Cross-cultural Comparison of College Students (/dosvalar/iii 2020 1 27.pdf)

Mariana V. C. Coutinho, Elena Papanastasiou, Stylianou Agni, John M. Vasko, Justin J. Couchman

Developing an Instrument to Measure Pedagogical Content Knowledge Using an Action Learning Method (/dosyalar/iji_2020_1_28.pdf)

Zulfikar Alimuddin, Jann Hidajat Tjakraatmadja, Achmad Ghazali

Blending Problem Based Learning with Scientific Argumentation to Enhance Students' Understanding of Basic Genetics (/dosyalar/iji_2020_1_29.pdf)

Tashi Choden, Sirinapa Kijkuakul

The Effect of Problem-Based Learning on Lateral Thinking Skills (/dosyalar/iji 2020 1 30.pdf)

Romy Faisal Mustofa, Yeni Ratna Hidayah

The Effect of Second Language Reading Strategy Instruction on Young Iranian EFL Learners' Reading Comprehension (/dosyalar/iji_2020_1_31.pdf)

Jalil Fathi, Maryam Afzali

Project Based Learning and Academic Procrastination of Students in Learning Physics (/dosyalar/iji_2020_1_32.pdf)

I Wayan Santyasa, Ni Ketut Rapi, I Wayan Windu Sara

Inculcating Self-editing Skills for Enhancing Writing Skills of the EFL Students (/dosyalar/iji 2020 1 33.pdf)

Valentina Sangeetha

Self-image of in-School Adolescents in Offa Local Government Area of Kwara State, Nigeria: Implications for Counselling Practices (/dosyalar/iji 2020 1 34.pdf)

Aminat Adeola Odebode

Trend of Critical Thinking Skill Researches in Biology Education Journals across Indonesia: from Research Design to Data Analysis (/dosyalar/iji 2020 1 35.pdf)

Eko Susetvarini. Ahmad Fauzi

E-Task-Based Learning Approach to Enhancing 21st-Century Learning Outcomes (/dosyalar/iji_2020_1_36.pdf)

Ali M. Al Kandari, Mousa M. Al Qattan

 $The \ Effects \ of \ Knowledge-Transforming \ Text \ on \ Elementary \ Students' \ Declarative, \ Procedural \ Knowledge, \ and \ Motivation \ in \ Environmental \ Learning \ (\ /dosyalar/iji_2020_1_37.pdf)$

Rusdhianti Wuryaningrum, Singgih Bektiarso, Imam Suyitno

The Effect of Complex Instruction Team Product (CITP) Learning Model on Increase Student's Skills (/dosyalar/iji_2020_1_38.pdf)

Dominggus Rumahlatu, Kristin Sangur, Sintje Liline

Leadership and Functional Competence Development in Teachers: World Experience (/dosyalar/iji_2020_1_39.pdf)

Anna Berestova, Natalya Gayfullina, Sergey Tikhomirov

 $Integrating\ Instruction\ Approach\ with\ Learners `Cognitive\ Style\ to\ Enhance\ EFL\ Indonesian\ Students `Writing\ Achievement\ (/dosyalar/iji_2020_1_40.pdf)$

Suiito, Wildan Mahir Muttaain

The Effects of Implicit Learning on Japanese EFL Junior College Students' Writing (/dosyalar/iji_2020_1_41.pdf)

Hiroyo Nakagawa, Ambrose Leung

The Effectiveness of the MIRS Approach in Improving Research Paper Writing Skill of Culinary Arts Vocational Student (/dosyalar/iji 2020 1 42.pdf)

Endang Mulyatiningsih, Sugiyono

The Impact of Scientific Approach and What-If-Not Strategy Utilization towards Student's Mathematical Problem Posing Ability (/dosyalar/iji_2020_1_43.pdf)

Harry Dwi Putra, Tatang Herman, Utari Sumarmo

The Effect of e-portfolio on Biological Concepts Understanding and Responses of Students with Different Academic Achievement Levels (/dosyalar/iji_2020_1_44.pdf)

Marheny Lukitasari, Rusdi Hasan, Akhmad Sukri

Gauging the Level of Reflective Teaching Practices among Science Teachers (/dosyalar/iji_2020_1_45.pdf)

Ali Khaled Bawaneh, Ahmed Boudjema Hamida Moumene, Osamah Aldalalah

 $The \ Effectiveness \ of \ Guided \ Inquiry \ Learning \ (GIL) \ and \ Problem-Based \ Learning \ (PBL) \ for \ Explanatory \ Writing \ Skill \ (/dosyalar/iji_2020_1_46.pdf)$

Bening Sri Palupi, Slamet Subiyantoro, Rukayah, Triyanto

 $The \ Effect \ of Local \ Wisdom-Based \ ELSII \ Learning \ Model \ on \ the \ Problem \ Solving \ and \ Communication \ Skills \ of \ Pre-Service \ Islamic \ Teachers \ (/dosyalar/iji_2020_1_47.pdf)$

Adi Fadli, Irwanto

A Case Study on Improving Reading Fluency at a University in the UAE (/dosyalar/iji_2020_1_48.pdf)

Jenny Eppard, Sandra Baroudi, Aicha Rochdi

The Development of a Metacognition Instrument for College Students to Solve Physics Problems (/dosyalar/iji_2020_1_49.pdf)

Haeruddin, Zuhdan Kun Prasetyo, Supahar

Assessing Students' Critical Thinking Skills in the Humanities and Sciences Colleges of a Middle Eastern University (/dosyalar/iji_2020_1_50.pdf)

Rahma Al-Mahrooqi, C. J. Denman

 $Feedback\ and\ Mobile\ Instant\ Messaging:\ Using\ WhatsApp\ as\ a\ Feedback\ Tool\ in\ EFL\ (/dosyalar/iji_2020_1_51.pdf)$

Sara Soria, Mar Gutiérrez-Colón, Anca Daniela Frumuseli

(http://www.gateacademy.c

Gate Association for Teaching and Education (http://www.gateacademy.c

International Congress (/international-congress)

Anatolian Journal of Education (http://e-aje.net/index.php? lang=en)

The Impact of Combining Communicative Traits of Writing with Cooperative Learning on Trainee Teachers' Pedagogical Knowledge and Attitudes (/dosyalar/iji_2020_1_52.pdf)

Abdelaziz M. Hussien

 $Evaluating \ the \ Use \ of \ Multicultural-based \ Short \ Story \ Appreciation \ Textbook \ to \ Teach \ Prose-Fiction \ Appreciation \ Course \ (\ /dosyalar/iji_2020_1_53.pdf)$

Muhamad Sholehhudin, Herman J. Waluyo, Suyitno, Nugraheni Eko Wardhani

A Meta-Analysis of Selected Studies on the Effectiveness of Gamification Method for Children

 $(/dosyalar/iji_2020_1_54.pdf)$

Muhibuddin Fadhli, Billy Brick, Punaji Setyosari, Saida Ulfa, Dedi Kuswandi

Mathematics Teaching Using Word-Problems: Is it a Phobia! (/dosyalar/iji_2020_1_55.pdf)

Heba Bakr Khoshaim

The Effect of Experiential Learning and Adversity Quotient on Problem Solving Ability (/dosyalar/iji_2020_1_56.pdf)

Mifta Hulaikah, I Nyoman Sudana Degeng, Sulton, F. Danardana Murwani

New Tendencies in Studies within Vocational Education in Russia (/dosyalar/iji_2020_1_57.pdf)

Anna V. Berestova, Anastasia V. Lazareva, Vyacheslav V. Leontyev

 $Relationship\ between\ Demographic\ Factors\ and\ Undergraduates\ Cyberbullying\ Experiences\ in\ Public\ Universities\ in\ Malaysia\ (/dosyalar/iji_2020_1_58.pdf)$

David Obafemi Adebayo, Mohd Tajudin Ninggal, Foluke Nike Bolu-Steve

Enhancing Self-Regulation Skills through Group Investigation Integrated with Think Talk Write (/dosyalar/iji 2020 1 59.pdf)

Lina Listiana, Raharjo, A. Saepul Hamdani

A Comparison of the English Grammatical Errors of Chinese Undergraduates from China and Malaysia (/dosyalar/iji_2020_1_60.pdf)

Lin Siew Eng, Chen Luyue, Chang Kuan Lim

International Journal of Instruction is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

HOMEPAGE (/) ABOUT US (/ABOUT-US) VOLUMES (/VOLUMES) CONTACT (/CONTACT)

International Journal of Instruction e-ISSN: 1308-1470 • www.e-iji.net

January 2020 • *Vol.13, No.1 p-ISSN:* 1694-609X

pp. 151-164

Received: 07/01/2019 Revision: 02/08/2019 Accepted: 07/08/2019 OnlineFirst:16/10/2019

Effect of 3D Visualization on Students' Critical Thinking Skills and Scientific Attitude in Chemistry

Tiwi Nur Astuti

S.Pd., Chemistry Education Master's Programme, Graduate School, Universitas Negeri Yogyakarta, Indonesia, *tiwinura*.2017@student.uny.ac.id

Kristian Handoyo Sugiyarto

Prof. Dr., Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Indonesia, sugiyarto@uny.ac.id

Jaslin Ikhsan

M.App.Sc. Dr., Department of Chemistry Education, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Indonesia, *jikhsan@uny.ac.id*

The 3D visualization program paves the way for the development of virtual reality. This study produces a 3D visualization program in virtual reality to increase high school students' critical thinking skills and scientific attitude. The Research and Development (R&D) method was based on the ADDIE model - analysis, design, develop, implement, and evaluate with quasi experimental – post-test design. The data of students' scientific attitude was collected through questionnaire adapted from several books and jounals, and those of the students' critical thinking skills was collected through chemical bonding test. A total of 96 grade 10th students were cluster randomly selected from senior high school in Gunungkidul Regency, Yogyakarta, Indonesia. The samples were set into three different classes, namely Class CG using a wet laboratory, Class EG-1 using a virtual reality laboratory integrated hybrid learning, and Class EG-2 using both of them. Based on the MANOVA test, it was found that students who used 3D visualization had better results in critical thinking skills and scientific attitudes.

Keywords: 3D visualization, virtual reality, hybrid learning, critical thinking skills, scientific attitude

INTRODUCTION

The new national curriculum emphasizes the importance of 21st century skills. The 21st century skills were known as 4C which include critical thinking and problem solving, communication, collaboration, creativity and innovation (Roekel, 2012). Students were required to be more active in learning so they can find concepts with direct experience

Citation: Astuti, T. N., Sugiyarto, K. H., & Ikhsan, J. (2020). Effect of 3D Visualization on Students' Critical Thinking Skills and Scientific Attitude in Chemistry. *International Journal of Instruction*, 13(1), 151-164. https://doi.org/10.29333/jji.2020.13110a

and train critical thinking to solve problems. The 21st century skills encourage students to develop their participation in learning, encourage communication and cooperation, improve their critical thinking skills, access and analyze information communication technology, and find a concept through their creativity by developing scientific attitudes in order to solve problems (Saavedra & Opfer, 2012; Wagner, 2008).

Critical thinking can be defined as the art of analysis and evaluating thinking with improving skills and attitudes (Paul & Elder, 2006). Critical thinking tests can use short essays to evaluate arguments or use multiple choice questions (Bart 2010; Ennis, 1993; Ennis, 2009). The purpose of critical thinking was to test an opinion or idea, including taking into consideration or thinking based on the opinions proposed. Students must be able to interpret, analyze, evaluate, explain, and conclude the problems that exist. Teachers should get their students to apply critical thinking processes to encourage critical thinking skills (Daud & Husin, 2004) and to use new information or manipulate existing knowledge so as to obtain reasonable responses to new situations (Lewis & Smith, 1993; Perkins & Murphy, 2006).

Scientific attitude is the ability to react consistently, rationally, and objectively in a certain way to deal with a problem that is reflected through one's behavior (Olasehinde & Olatoye, 2014; Jancirani et al., 2012). Activities of students in carrying out a scientific research to sharpen their scientific knowledge and skills is an action that reflects a scientific attitude. Teachers' role in teaching and learning process also influences the motivation to be scientific in students (Senler, 2016). When the teacher gives examples of scientific attitudes in learning activities, it will lead to a desire in students to participate in doing scientific attitudes in their daily lives. Scientific attitude includes attitude of curiosity, open-mindedness, attitude of discovery, open attitude, honesty, critical thinking, objective, responsibility, cooperation, and firm stance is someone who has a scientific attitude (Pitafi & Farooq, 2012; Astutik & Praharani, 2018).

Virtual learning is a new generation of types of learning using computers (Bakar et al., 2013). Virtual package represents a comprehensive application of computer modeling, simulation technologies, and analysis. As technology develops, a lot of research is done by utilizing 3D visualization models in a software to provide real-world representation. The 3D visualization makes it possible for people to see things that are unlikely to be seen in the real world, and observe things that are not possible in the real world (Wu et al., 2010). Virtual reality (VR) is a new 3D interpretation environment built on the basis of 3D visualization. Visualization technologies have intrinsic properties and activate cognitive tools that help students to learn and even build content with what they studied or understood on their subject contents (Sural, 2018).

Virtual reality was very useful in helping students understand how to design research experiments because using a computer system can provide a good simulation of what should happen in the real world and help them to collect data, analyze, and train students to understand how a scientist can explain what they are researching. The conventional teaching in chemistry lab processes is the learners to the use of various harmful chemical substances. So, a careful preparation for the experiments and substances for the

apparatus and substances. Experiments carried out conventionally in schools cannot be done individually because students are high cost of the materials (Allwright, 1991). Therefore, it is necessary to conduct research to determine the effectiveness of virtual laboratories as a substitute for traditional laboratories (Hawkins & Phelps, 2013). An interview survey carried out by the chemistry teacher in the pre-analysis stage revealed that the topic "chemical bonding" was the most difficult topic for the students.

One important aspect of 21st century skills is critical thinking skills. These skills always encourage students to behave scientifically in all their actions. However, in chemistry subjects there are many abstract materials so that students have difficulty thinking critically in solving problems. In addition, chemistry is also closely related to practicum which requires the scientific attitude of students. In order to help students, improve their imagination in thinking critically and getting used to being scientific, we need media that can facilitate students in understanding the concept. Therefore, it is necessary to develop 3D visualization media in the form of virtual reality.

To overcome these various problems in teaching and learning of chemistry, this study, which is designed for the development of a virtual reality laboratory integrated hybrid learning. Hybrid learning is learning that combines face-to-face and online phases (Zhao & Breslow, 2013) and as long as it is linked to internet, the latter component of the class can be done anywhere (Solikhin et al., 2018). Hybrid learning can make the learning atmosphere more interesting and interactive. In addition, students can also study online outside of school hours and anywhere. The attitude of students toward hybrid learning is very positive and they are generally satisfied with their learning experience (Antonoglou, 2011). This virtual reality laboratory also offers the students to relate their learning through real situations through the use of videos, which provide more meaningful and effective chemistry lessons. An effective way of simulating is preparation for laboratory activities (Rutten et al., 2012). Therefore, the general objective of this study was to develop a virtual reality and the main purpose of this study was to examine the effect of 3D visualization on students' critical thinking skills and scientific attitude in chemistry.

METHOD

Research Design

This study used a Research and Development (R & D) method, specifically, the ADDIE model consists of five main stages: (1) analysis; (2) design; (3) develop; (4) implement; (5) and evaluate. The product of this development was a 3D visualization program based virtual reality in a chemical bonding practicum. In the implementation phase, 3D visualization media was tested in 3 classes with a quasi-experiment design. This design appears to be the most suitable for evaluating the effects of 3D visualization, because it was a comparison of teaching and learning processes between the virtual reality classroom, the conventional classroom using wet laboratory, and both of them on the same topic can be performed. This experiment was followed by a quasi-experimental design where there was two experimental group (EG-1 and EG-2) and one control group (CG). The procedures involved a treatment and a posttest. The stages of R&D - ADDIE model can be explained in Table 1.

Table 1 Stage of R&D – ADDIE Model

Stage	Description
Analysis	The initial needs analysis was done by gathering information and formulating a
•	general description of the 3D visualization learning media that will be developed
	to suit the characteristics of the students.
Design	The design stages were in the form of product to design 3D visualization media
	and learning designs that will be applied in the classroom
Develop	The development of 3D visualization products based virtual reality laboratories
	was validated by material experts and media experts
Implement	The 3D visualization products were implemented to be tested for effectiveness
Evaluate	The evaluation phase was done by testing the quality of the product by senior high
	school teachers

Participants

The research was conducted at a public senior high school in Gunungkidul, Yogyakarta, Indonesia. Participants in this study were from grade 10. For the purpose of this study, as many as 96 students (54 female and 42 male) were cluster randomly selected from a public senior high school in those regency. The average age of students was 15 years old. The samples were classified into three different classes, class CG, class EG-1, and class EG-2, each class consist 32 students.

Data Collection

The variable measured in this study was the student's critical thinking skills and scientific attitude. The data of students' critical thinking skills were collected through chemical bonding test and those of the data students' scientific attitude was collected through questionnaire. Chemical bonding test consists 6 items of short essay and questionnaire consisting of 15 items. The questionnaire was adapted from those found in several books and journal articles on scientific attitude.

The chemical bonding test and scientific attitude questionnaire analysis were done by validity and reliability tests. Those chemical bonding test and scientific attitude questionnaire were validated theoretically and empirically. The theoretical validity was done by asking the expert judgment in terms of material, construction, and language from expert lecturer. The theoretical validity analysis was performed using Aikens' V, formulated as follows (Aiken, 1985).

$$V = \frac{\sum s}{[n(c-1)]}$$

Note: s = r - lo; r = number of raters; <math>lo = lowest validity score; c = highest validity score; r = number given by raters.

The calculation result of the Aiken's V value compared with the value of the validity coefficient based on the interpretation guideline of uncorrected correlation coefficients in the predictive validity study (Emery & Bell, 2009) presented in Table 2.

Table 2
The Interpretation Guideline of Uncorrected Correlation Coefficients on Predictive Validity Study

Validity Coefficient	Interpretation
> 0.35	Very useful
0.21 - 0.35	Useful
0.11 - 0.20	Depend on condition
< 0.11	Not useful

The item used very useful interpretation which has a value of Aiken's V greater than the value of the validity coefficient of 0.35. The analysis result showed that all chemical bonding test and scientific attitude questionnaire have a validity coefficient > 0.35. So that, it can be said chemical bonding test and scientific attitude questionnaire were theoretically valid.

Furthermore, empirical validity was done by testing all chemical bonding test and scientific attitude questionnaire against the other students that not used as the samples in this study. A total of 264 students were obtained to test the chemical bonding test and 275 students were obtained to test the scientific attitude questionnaire. The QUEST program was used to conduct the empirical validity and reliability. The items are valid if infit mean square score was in the range of 0.77 to 1.33 and items have good reliability if the score equal to or more than 0.70. Based on the result of empirical validity analysis there were all items of chemical bonding test was valid, but 1 item of scientific attitude questionnaire not valid. In addition, the analysis results show a reliability estimate chemical bonding test of 0.82 and scientific attitude questionnaire of 0.84.

Data Analysis

Multivariate Analysis of Variance (MANOVA) was used for testing the data obtained in the study with all manova test requirements been carried out and the conditions fulfilled. Quality of 3D visualization media was analyzed by quantitative descriptive method. These scores then converted into an interval data scale. Furthermore, the data were classified into a category based on the ideal rating category and can be seen in Table 3.

Table 3 Ideal Rating Category

Ideal Rating Category	
Score	Range Quality
$\overline{X} > \overline{X}_1 + 1.8 \text{ SBi}$	Excellent
$\overline{X}_1 + 0.6 \text{ SBi} < \overline{X} \le \overline{X}_1 + 1.8 \text{ SBi}$	Good
$\overline{X}_1 - 0.6 \text{ SBi} < \overline{X} \le \overline{X}_1 + 0.6 \text{ SBi}$	Good Enough
$\overline{X}_1 - 1.8 \text{ SBi} < \overline{X} \le \overline{X}_1 - 0.6 \text{ SBi}$	Poor
$\overline{X} \le \overline{X}_1 - 1.8 \text{ Sbi}$	Very Poor

Note: X is empirical score; X_i is average of ideal scores; SBi is ideal score of deviation.

FINDINGS AND DISCUSSION

Developing Process

The virtual reality may fail to meet learners' needs if learning activities and tasks are designed inside an inappropriate pedagogical approach (Shih & Yang, 2008). Instructional designers or educators face the challenge of deploying features of virtual reality into their 3D visualization courses. One of the best-valued features of virtual reality was the ability of providing highly interactive learning experiences. Marker-based virtual reality application has been developed and computer hardware pieces were used as a teaching material. Before starting to develop a 3D visualization application, author researched existing tools and technologies in the field. It was decided on Blender and Unity tool which have good support and documentation. Blender is a program to build 3D object and unity is an ultimate game development platform to build high-quality 3D and 2D games. Key components used in the development process are given in Figure 1.

Figure 1

3D Visualization Based Virtual Reality Development Process

The virtual reality product development process using the Blender program that has been incorporated into the Unity program can be seen in Figure 2.

Figure 2 Virtual Reality Layout Design

Virtual reality products can be used using Android and are equipped with 3D glasses (oculus) and controllers. The results of developing 3D visualization final products based virtual reality laboratories can be seen in Figure 3 and the display of virtual reality laboratories with 3D glasses (oculus) can be seen in Figure 4.

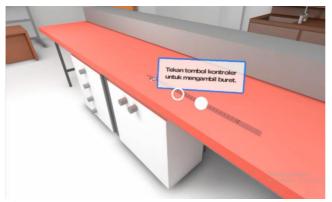


Figure 3 3D Visualization Products in Virtual Reality

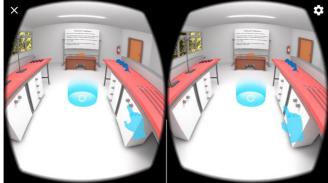


Figure 4
Display of Virtual Reality Laboratory with Oculus

The 3D full immersive virtual reality will elevate a learner's interest and motivation compared with learning in a 2D animated environment (Limniou et al., 2008). Virtual reality (VR) can help students understand learning material in the learning process by observing and making observations. These observations create an impression of depth and imagination in students, so it's easy to remember what has been done using VR.

Effect of 3D visualization on students' critical thinking skills and scientific attitude

The chemical bonding test and scientific attitude questionnaire used in the study have been empirically validated and theoretically validated by examined by expert judgment. According to expert judgment the chemical bonding test and scientific attitude questionnaire were valid and suitable for use with some revision then empirically validated. The total number of students who completed this chemical bonding test was 264 and 275 students who completed the scientific attitude questionnaire. The QUEST program was used to conduct the empirical validity. The validity of fit item was more than 0.77 and less than 1.30. The empirical validity of chemical bonding test and scientific attitude questionnaire can be seen in Figure 5 and Figure 6.

INFIT MNSQ .56 .63 .71 .83 1.00 1.20 1.40 1.60 1.80 1 item 1	all on all (N	I = 264 L =	6 Probabi	lity Level	.= .50)					
1 item 1	MNSQ									
3 item 3		+	+				+		+	+
4 item 4	2 item 2					*				
4 1 (2m 4	3 item 3					*				
6 item 6 . *	4 item 4					*				
. .	5 item 5						*			
······································	6 item 6					*		-		
T										
ioure 5	Figure 5									
	Empirical	Validit	v Resu	lts of Cl	hemica	al Bondi	ng Test			

NFIT								
MNSQ	.63	.71	.83	1.00	1.20	1.40	1.60	1.80
1 item 1	 			*	+		+	+
2 item 2				j *				
3 item 3				*				
4 item 4				*				
5 item 5				*				
6 item 6				*				
7 item 7				*				
8 item 8				*				
9 item 9				*				
10 item 10					*			
11 item 11				*				
12 item 12			*					
13 item 13		* .						
14 item 14				*				
15 item 15				*				

Figure 6
Empirical Validity Results of Scientific Attitude Questionnaire

Based on Figure 5 and Figure 6, all the chemical bonding test was valid, but in the scientific attitude questionnaire, among 15 items, there were 1 item that the expert considered unfit for inclusion. Because item number 13 was not valid, only 14 items of scientific attitude questionnaire were used.

The QUEST program also used to conduct the reliability test. The interpretation of reliability score of chemical bonding test and scientific attitude questionnaire can be seen in Figure 7.

Item Estimates (Thresholds)	Item Estimates (Thresholds)	
all on all (N = $264 L = 6$	Probability Level= .50)	all on all (N = $275 L = 15$	Probability Level= .50)
Summary of item Estimates		Summary of item Estimates	
=======================================			
Mean	.00	Mean	.00
SD	1.02	SD	.85
SD (adjusted)	.93	SD (adjusted)	.78
Reliability of estimate	.82	Reliability of estimate	.84

Chemical Bonding Test

(b) Scientific Attitude Questionnaire

Figure 7

Reliability Results of Empirical Tests

The reliability of the chemical bonding test proved adequate (α = 0.82) and scientific attitude questionnaire proved adequate (α = 0.84). This reliability states that both of them have been reliable to use.

The 3D visualization media based virtual reality was implemented in 3 classes namely control group (CG) and experiment group (EG-1 and EG-2). Class CG conducts learning using wet laboratory, class EG-1 implements learning using a virtual reality laboratory integrated hybrid learning and class EG-2 carrying out learning using wet laboratory and virtual reality-based hybrid learning. From the results of the trials obtained the average value of critical thinking skills and scientific attitudes of the three classes. The comparison of students' critical thinking skills and scientific attitude in each class can be seen in Figure 8.

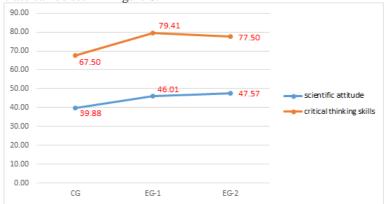


Figure 8
The Comparison of Students' Critical Thinking Skills and Scientific Attitude

Based on Figure 8, every class used in this study shows the results that students' critical thinking skills and scientific attitude for class EG-1 and class EG-2 higher than class CG. This was because in the class EG-1 and class EG-2 used virtual reality that can facilitate students to learn independently. The 3D visualization based virtual reality can be used as an independent learning sources and very flexible in the chemical bonding teaching-learning because it can be used anywhere and anytime.

The students' critical thinking skills and scientific attitude were analysed by MANOVA. Before carrying out the MANOVA analysis a prerequisite test was conducted in the form of a multivariate normality and covariance homogeneity test. The multivariate

normality test was done by comparing the distance of the Mahalonobis (d_i^2) with the

value of chi square $(\chi)^2$ for each group. Data was multivariate normally distributed if the scatter-plot graph tends to form a straight line or more than 50% the distance value

of mahalanobis (d_i^2) is less or equal to the value of chi square $(\chi)^2$. The graph of the results of the multivariate normality test can be seen in Figure 9.

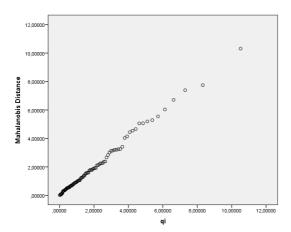


Figure 9 Graph of Multivariate Normality Test

Based on Figure 9 it can be seen that the graph tends to form a straight line. This indicates that students' data of critical thinking and scientific attitude results of product testing were normally distributed.

Covariance matrix homogeneity test can be seen based on Box's M. Data comes from populations that have a homogeneous covariance matrix if the significance value was more than 0.05. The result of the homogeneity test can be seen in Table 4.

Table 4

Result of Homogeneity Test

Variable	Box's M	F	df1	df2	Sig
Critical Thinking Skills and	9.702	1.567	6	215559.692	0.152
Scientific Attitude					

Based on Box's M test results, the significance results are 0.152, this indicates that the three classes have the same covariance matrix.

MANOVA analysis based on Wilks' Lambda was used in this study because the sample consisted of more than two independent groups (Muijs, 2011) and manova assumptions were met (Hair et al., 2006). The results of MANOVA analysis can be seen in Table 5.

Table 5 Result of Wilks' Lambda Multivariate Test

Effect	Significance	Decision Criteria
Wilks' Lambda	0.000	Sig. < 0.05

As Table 5 shows, the sig. score was 0.000, less than $\alpha = 0.05$. It can be concluded that at the 95% confident level there is a significant influence of the treatment on students' critical thinking skills and scientific attitude. The presence of significant influence caused by different treatment in each class. This study confirms the 3D visualization has a positive effect on students' performance in hybrid learning. On the other hand, interactive learning by using simulations based virtual reality laboratory, where students

become active in their learning, provide opportunities for students to construct and understand difficult concepts more easily (Demirci, 2003) and generally increase learning speed by allowing students to express their real reactions easily (Bajpai & Kumar, 2015). The 3D visualization helps to improve a student's imagination by developing a student's capacity to detect and follow near invisible cues. Barab et al. (2000) found that 3D virtual worlds are an effective tool to foster undergraduate students' understanding of course contents. Students can repeat virtual reality simulations at home or anywhere according to their need so that they will form students' critical thinking skills and scientific attitude.

The evaluation phase in this study was carried out by evaluating the quality of 3D visualization media in virtual reality. This assessment was carried out by 8 teachers of senior high school using media assessment instruments that have been validated by expert judgment. Assessment was divided into 3 main aspects, namely aspects of learning, material, and technique. Assessments from the teacher are then searched for averages and adjusted to the ideal rating category. The evaluation of the quality of 3D visualization media can be seen in Table 6.

Table 6
Results of Ouality Evaluation of 3D Visualization Media

Aspect	Assessment Result	Category
Learning		
Suitability of the media with the student needs	3.875	excellent
Media supports the process of achieving learning goals	3.750	excellent
Learning support media using hybrid learning communication models	3.875	excellent
Media motivates and attracts the attention of students	3.625	Excellent
Media helps the learning process	3.750	excellent
Visual media design matches the user	3.875	excellent
Media can stimulate students to do practicum	3.500	excellent
Media facilitates students to acquire new skills	3.750	excellent
Simulation of practical activities provides interactive learning	3.500	excellent
opportunities		
Material		
The concept of practicing chemical bonding is correct	3.375	excellent
Media content is accurate	3.875	excellent
Content in the media contains educational value	3.750	excellent
The content presented is easily understood by students	3.750	excellent
Content in the media is interrelated to clarify the delivery of	3.750	excellent
information		
Technique		
Use of proportional layouts	3.875	excellent
Display colors and background	3.625	excellent
The relevance of media to technology that is developing at this time	3.750	excellent
Ease of navigation	3.750	excellent
Accuracy of visualization	3.875	excellent
Suitability of 3D objects	3.875	excellent
Clarity of illustration	3.625	excellent
Media creativity and innovation	3.750	excellent
Average	3.733	

The average assessment score for quality of 3D visualization was 3.733 in the "excellent" category. From these results it can be concluded that 3D visualization media

was suitable to be used in the learning process effectively and efficiently. This media can improve students' critical thinking skills and scientific attitude well. Learning media such as 3D visualization have a positive influence in gaining learning experience, getting used to doing scientific attitudes, exercising imagination, increasing critical thinking skills, and improving learning outcomes (Barab et al., 2000; Higgins et al., 2014; Jabbour, 2014; Omilani et al., 2016).

The advantages of 3D visualization media include: this media can be used anytime and anywhere, helping users to visualize 3D objects, can avoid accidents in real laboratories, and users can interact directly with objects in virtual reality laboratory media. The disadvantage of 3D visualization media is this media can only be operated using a smartphone, while the computer can only display the simulation with the control of the smartphone. This is because the use of this media requires supporting devices, 3D glasses (oculus) and a controller.

CONCLUSION

The developed product of 3D visualization based on virtual reality showed that: (1) the 3D visualization media can be operated in Android with the help of 3D glasses (oculus) and controller, (2) students can use 3D visualization media both in the classroom and outside the classroom, (3) 3D visualization media effectively improved students' critical thinking skills and scientific attitude, and (4) the quality of 3D visualization media was "excellent" category. Suggestions for the use of 3D visualization products based on the results of research and development is that the virtual reality media can be further developed with different chapter. In addition, this media can be used as classroom action research by chemistry teachers with other variable.

ACKNOWLEDGEMENT

Authors would like to thank to Directorate General of Higher Education, Ministry of Research, Technology and Higher Education, Indonesia for funding of this research with the contract No. 10/PenelitianTimPascasarjana/UN34.21/2018.

The authors declare that there is no conflict of interest.

REFERENCES

Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings. *Edu.&Psyc. Meas.*, 45(1), 131-142. https://doi.org/10.1177/0013164485451012.

Antonoglou, L. D., Charistos, N. D., & Sigalas, M. P. (2011). Design, development and implementation of a technology enhanced hybrid course on molecular symmetry: Students' outcomes and attitudes. *Chem. Educ. Res. Pract.*, *12*(4), 454-468. https://doi.org/10.1039/C0RP90013C.

Allwright, D. (1991). *Autonomy and individualization in whole-class instruction*. London: Modern English Publications & The British Council.

Astutik, S., & Prahani, B. K. (2018). The practicality and effectiveness of collaborative creativity learning (CCL) model by using PhET simulation to increase sudents' scientific creativity. *Int.J. Ins*, 11(4), 409-424. https://doi.org/10.12973/iji.2018.11426a.

- Bajpai, M., & Kumar, A. (2015). Effect of virtual laboratory on students' conceptual achievement in physics. *International Journal of Current Research*, 7(2), 12808-12813.
- Bakar, N., Zaman, H. B., Kamalrudin, M., Jusoff, K., & Khamis. N. (2013). An effective virtual laboratory approach for chemistry. A. J. of Bas & App. Sci, 7(3), 78-84.
- Barab, S. A., Hay, K. E., Squire, K., Barnett, M., Schmidt, R., & Karrigan, K., Yamagata-Lynch, L., & Johnson, C. (2000). Virtual solar system project: learning through a technology-rich, inquiry-based, participatory learning environment. *J. of Sci. Education and Technology*, *9*(1), 7-25. https://doi.org/10.1023/A:1009416822783.
- Bart, W. M. (2010). *The measurement and teaching of critical thinking skills*. Invited, colloquium given at the Center for Research on Education Testing, Tokyo, Japan.
- Daud, N. M., & Husin, Z. (2004). Developing critical thinking skills in computer-aided extended reading classes. *British Journal of Educational Technology*, *35*(4), 477-487. https://doi.org/10.1111/j.0007-1013.2004.00405.x.
- Emery, J. L., & Bell, J. F. (2009). The predictive validity of the biomedical admissions test for pre-clinical examination performance. *Medical Education*, 43(6), 557-564. https://doi.org/10.1111/j.1365-2923.2009.03367.x.
- Ennis, R. H. (1993). Critical thinking assessment. *Theory into Practice*, *32*(3), 179-186. https://doi.org/10.1080/00405849309543594.
- Ennis, R. H. (2009). *An annotated list of critical thinking tests*. Retrieved from http://www.criticalthinking.net/TestListRevised11-27-09.pdf
- Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (2006). *Multivariate data analysis*. New Jersey: Prentice-Hall International, Inc.
- Hawkins, I., & Phelps, A. J. (2013). Virtual laboratory vs. traditional laboratory: Which is more effective for teaching electrochemistry? *Chemistry Education Research and Practice*, *14*(4), 516-523. https://doi.org/10.1039/c3rp00070b.
- Higgins, S., Xiao, Z., & Katsipataki, M. (2012). The impact of digital technology on learning: A summary for the education endowment foundation. Durham University.
- Jabbour, K. K. (2014). An analysis of the effect of mobile learning on Lebanese higher education. *Informatics in Education*, 13(1), 1-15.
- Jancirani, R., Dhevakhrisnan, R., & Devi, S. (2012). A study on scientific attitude of adolescene students in namakkal district. *Int. Educational E-Journal*, 1(4), 2-8.
- Lewis, A., & Smith, D. (1993). Defining higher order thinking. *Theory into Practice*, 32(3), 131-137. https://doi.org/10.1080/00405849309543588.
- Limniou, M., Roberts, D., & Papadopoulos, N. (2008). Full immersive virtual environment CAVETM in chemistry education. *Computer & Education*, *51*(2), 584-593. https://doi.org/10.1016/j.compedu.2007.06.014.
- Muijs, D. (2011). Doing quantitative research in education with SPSS. London: SAGE.
- Olasehinde, K. J., & Olatoye, R. A. (2014). Scientific attitude, attitude to science and science achievement of secondary school student in Katsina State, Nigeria. *J. of Edu. and Social Research*, 4(1), 445-452. https://doi.org/10.5901/jesr.2014.v4n1p445.

- Omilani, N. A., Ochanya, N. M. R., & Aminu, S. A. (2016), The effect of combined virtual and real laboratories on students' achievement in practical chemistry. *Int. J. of Secondary Education*, 4(3), 27-31. https://doi.org/10.11648/j.ijsedu.20160403.11.
- Pitafi, A.I., & Farooq, M. (2012). Measurement of scientific attitude of secondary school student in Pakistan. *Academic Research International*, 2(2), 379-392.
- Paul, R., & Elder, L. (2006). *The miniature guide to critical thinking concepts and tool.* Retrieved from http://www.criticalthinking.org/files/Concepts_Tools.pdf
- Perkins, C., & Murphy E. (2006). Identifying and measuring individual engagement in critical thinking in online discussions: An exploratory study. *Educational Technology & Society*, *9*(1), 298-307.
- Roekel, D. V (2012). Preparing 21st century students for a global society: an educator guide to the "four cs". USA: National Education Association.
- Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. *Computers & Education*, 58(1), 136-153. https://doi.org/10.1016/j.compedu.2011.07.017.
- Saavedra, A. R., & Opfer, V. D. (2012). *Teaching and Learning 21st century Skill: Lessons from the learning sciences*. Paper presented at the Joint AARE/APERA Conference, Sydney. Retrieved from http://asiasociety.org/files/rand-1012report.pdf.
- Senler, B. (2016). Pre-service teachers' self-efficacy: The role of attitude, anxiety and locus of control. *Australian Council for Educational Research*, 60(1), 26-41. https://doi.org/10.1177/0004944116629807.
- Shih, Y. C., & Yang, M. T. (2008). A collaborative virtual environment for situated language learning using VEC3D. *Educational Technology & Society*, 11(1), 56-68.
- Solikhin, F., Sugiyarto, K. H., & Ikhsan, J. (2018). The measurement of self-efficacy in the use of VICH-LAB in electrochemistry. *AIP Conference Proceedings* 2021, 040002 (2018). https://doi.org/10.1063/1.5062746.
- Sural, I. (2018). Augmented reality experience: Initial perceptions of higher education students. *Int. J. of Instruction*, 11(4), 565-576. https://doi.org/10.12973/iji.2018.11435a.
- Wagner, T. (2008). The global achievement gap: Why even our best schools don't teach the new survival skills our children need and what we can do about it. New York, NY: Basic Books.
- Wu, H., He, Z., & Gong, J. (2010). A virtual globe-based 3D visualization and interactive framework for public participation in urban planning processes. *Computers, Env. & Urb. Sys.*, 34(4), 291-298. https://doi.org/10.1016/j.compenvurbsys.2009.12.001.
- Zhao, Y., & Breslow, L. (2013). *Literature review on hybrid/blended learning*. Massachusetts Institute of Technology, Teaching and Learning Laboratory Working Paper. Retrieved from http://tll.mit.edu/sites/default/files/library/Blended_Learning_Lit_Review.pdf.